You are given an n x n 2D matrix representing an image.
Rotate the image by 90 degrees (clockwise).
Follow up:
Could you do this in-place?
思路1:先按主对角线翻转一次,然后左右再翻转一次。每个元素需要两次移动,但是好理解,不易出错。
思路2:直接计算坐标替换,每个元素一次移动即可。
扩展:类似的剑指offer上的 旋转打印矩形内元素的题目,也是坐标操作很麻烦,需利用left,right,up,down四个bar的方法仔细处理。
思路1:
public class Solution { public void rotate(int[][] matrix) { if (matrix == null) return; int n = matrix.length; int i, j; for (i = 0; i < n; i++) for (j = 0; j < i; j++) { int tmp = matrix[i][j]; matrix[i][j] = matrix[j][i]; matrix[j][i] = tmp; } for (i = 0; i < n; i++) for (j = 0; j < n / 2; j++) { int tmp = matrix[i][n - 1 - j]; matrix[i][n - 1 - j] = matrix[i][j]; matrix[i][j] = tmp; } } public static void main(String[] args) { // int[][] matrix = new int[][] { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } // }; int[][] matrix = new int[][] { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } }; new Solution().rotate(matrix); }}
思路2:
public void rotate2(int[][] matrix) { if (matrix == null) return; printMatrix(matrix); for (int i = 0, j = matrix.length - 1; i < j; i++, j--) { for (int k = i, d = j; k < j; k++, d--) { int t = matrix[i][k]; matrix[i][k] = matrix[d][i]; matrix[d][i] = matrix[j][d]; matrix[j][d] = matrix[k][j]; matrix[k][j] = t; } }